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Fig. 1 ‘‘Representative’’ time evolution for ‘‘uniformly modu-
lated”’ turbulence.
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Fig. 2 Ordinate axis scale change effectively capturing the ‘‘uni-
formly modulated’’ structure.

Conclusions

Numerical results for this analysis are not available at this
time since little is known about the functional form of
B{(w;,w,) for atmospheric turbulence. This Note serves partly
to introduce formally the applicability and advantages of
bispectral concepts—concepts already employed in related
fields?'-?¢ to aircraft response analyses. One unique feature of
the bispectrum of clear importance in atmospheric turbulence
is that it also automatically incorporates into its functional
form the effects of the non-Gaussian statistical structure of
the turbulence; the bispectrum for Gaussian turbulence is
identically zero.
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Introduction

HE U-g method gives critical flutter speeds that are in
agreement with the traditional British approach with
lined-up frequency parameters, but overestimates the relative
damping ratio at other speeds.! However, useful values of
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damping can be obtained by using Frueh and Miller’s? correc-
tion formula. Hassig® developed the p-k method which gives
damping values in excellent agreement with the British
method. This method iterates for the zeros of the flutter deter-
minant using values of the aerodynamics interpolated from
given values at a set of frequency parameters. It is assumed
that, for sinusoidal motions with slowly varying amplitude,
the aerodynamic forces can be approximated by those based
on constant amplitude.

In this Note the high-frequency version of the ONERA
unsteady transonic code* is used to compute lift and pitching
moment coefficients of an NACA 64A006 airfoil oscillating in
pitch and plunge. Comparisons of results from this code with
LTRAN2-NLR® computations are given in Ref. 6 and, in
general, are in quite good agreement at reduced frequencies up
to, and, in some cases, exceeding, 0.4. With the aerodynamics
data obtained from the ONERA code, the U-g method is used
to compute critical flutter speeds and damping ratios based on
Frueh and Miller’s formula.? The results are compared with
those from the p-k method.

Flutter Analysis of Two-Degree-of-Freedom
Airfoil Motion

Figure 1 shows the notations used in the analysis of two-
degree-of-freedom airfoil motion oscillating in pitch and
plunge. The bending deflection is denoted by A, positive in the
downward direction. « is the pitch angle about the elastic axis,
positive with the nose up. The elastic axis is located at a
distance a,b from the midchord, while the mass center is
located at a distance x,b from the elastic axis. Both distances
are positive when measured toward the trailing edge of the air-
foil. The aeroelastic equations of motion have been derived by
Fung’ and can be written as

§+xaa'+w§,g=Qh/mb )

X E+ria+riola=Q, /mb? )

where £ = A/b is the nondimensional displacement, m the mass
per unit span of the airfoil, w, and w, the uncoupled plunging
and pitching frequency, respectively, r, the radius of gyration
about the elastic axis, and Q, and Q, the total forces and
moments acting about the elastic axis, respectively. In the
absence of externally applied forces and moments, Q, and Q,,
can be written as

Il

On
Q.

where g is the dynamic pressure, C, and C,, the lift and mo-
ment coefficients with the subscripts # and « denoting unit
plunging and pitching motions, respectively.

In the U-g method, a structural damping coefficient g is in-
troduced into Egs. (1) and (2) by multiplying the third term of

~gelC,E/2+ Cyal 3)

~ge*[C,, £/2+C,, 0] @
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Fig. 1 Two-degree-of-freedom airfoil motion.
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the two equations by the factor (1 +ig). For harmonic oscilla-
tions, £ and « can be written as

E=Eje (5)
o= e 6)

Let u=m/wb’p to be airfoil-air mass ratio, k,=wc/U the
reduced frequency, and define

N=p(1+ig) (w26%/U7) )
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Fig. 2a Comparison of damping ratio and w,/w, with U/bw, be-
tween the U-g and p-k methods for an NACA 64A006 airfoil at
M=0.85 and p=50.
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Fig. 2b Comparison of damping ratio and w,/w, with U/bw, be-
tween the U-g and p-k methods for an NACA 64A006 airfoil at
M=0.85 and p =50.
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Fig. 3a Comparison of damping ratio and w,/w, with U/bw, be-
tween the U-g and p-k methods for an NACA 64A006 airfoil at
M=0.85 and p =250.
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Fig. 3b Comparison of damping ratio and w,/w, with U/bw, be-
tween the U-g and p-k methods for an NACA 64A006 airfoil at
M=0.85 and g =250.

Upon substituting Egs. (5-7) into Egs. (1-4), the equations can
be solved for the complex eigenvalue A.

Hassig,? quoting from Frueh and Miller,? gives an expres-
sion for the damping ratio, which is written in the present

notations as
g [ 2 d{(w/wy) }
y=—11

& el 8
2 k, d(U/bw,) ®
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In the p-k method, Egs. (5) and (6) are written in the follow-
ing form:

E=§0e” &)
o= opel (10)

where p=f+iw, and § is the damping factor. Substituting
into Egs. (1-4) yields a solution for p, and the damping ratio ¢
is given as

5
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Damping Ratios for an NACA 64A006 Airfoil

The results for the damping ratios are presented for an
NACA 64A006 airfoil at M=0.85. The following parameters
are used: x,=0.25, r,=0.5, w,/w,=0.2, and pitch axis
=0.25¢ (a, = —0.5).

The effects of u on the damping and frequency ratios are
shown in Figs. 2 and 3 for u =50 and 250. The results for { and
v of the two modes are computed using Eqs. (8) and (11). The
critical flutter speeds and frequencies obtained from the U-g
and p-k methods are identical for all p’s considered. For the
bending mode, the differences in subcritical damping and fre-
quency ratios between the two methods decrease for increasing
u. At =250, these two methods give almost identical results.
For the torsion mode, the differences between { and v increase
with x, while the differences in w,/w, decrease. The fairly
good agreement between the two methods may be a special
case for a two-degree-of-freedom, two-dimensional airfoil
motion. Results for subcritical damping for more complex
cases! show poor comparison between the U-g and British
methods with lined-up frequency parameters which, in turn,
has been demonstrated by Hassig? to be in good agreement
with the p-k method.

Conclusions

For a two-dimensional airfoil oscillating in two degrees of
freedom, the p-k method gives flutter speeds and k., values
identical to those from the U-g method. The computed sub-
critical damping ratios at M=0.85 for different u show that
the U-g method using Frueh and Miller’s? formula gives
results quite close to those from the p-k method, especially for
large values of u. The results are always in very close agree-
ment for small values of U/bw,, irrespective of u.
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